
CS311 Lecture: Pipelining and Superscalar Architectures  

Last revised July 10, 2013
Objectives:

1. To introduce the basic concept of CPU speedup
2. To explain how data and branch hazards arise as a result of pipelining, and 

various means by which they can be resolved.
3. To introduce superpipelining, superscalar, and VLIW processors as means to get 

further speedup, including techniques for dealing with more complex  hazard 
conditions that can arise.

 Materials: 

1. Pipelined MIPS Simulation; Interlocked MIPS Simulation
2. Handout showing stages
3. Sample programs: Add 1 to Memory 1000, Forwarding demo RType, Delayed 

Load Need Demo, Delayed Load Demo

I. Introduction

A. For any CPU, the total time for the execution of a given program is 
given by:

Time = cycle time * # of instructions * CP

= # of instructions * CPI
	
 clock-rate

where: CPI (clocks per instruction) is the average number of clock 
cycles needed to execute an instruction

B. This equation suggests three basic strategies for running a given 
program in less time:  (ASK CLASS TO MAKE SUGGESTIONS 
FOR EACH)

1. Reduce the cycle time (increase the clock rate)
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a) Can be achieved by use of improved hardware  design/
manufacturing techniques.  In particular, reducing the 
FEATURE SIZE (chip area  needed for one component), results 
in lower capacitance and  inductance, and can therefore run the 
chip at a higher frequency.

b) Do less computation on each cycle (which increases CPI, of 
course!) 

2. Reduce the instruction count.

a) Better algorithms.

b) More powerful instruction sets - an impetus for the 
development of CISCs.  (This, however, leads to increased 
CPI!)

3. Reduce CPI

a) Simplify the instruction set - an impetus for the original 
development of RISCs.  (This, however, leads to increased 
program length!).

b) Do more work per clock.  (This, however, requires a longer 
clock cycle and leads to a lower clock rate!).

4. In the case of clock rate and instruction count, there are speedup 
techniques that are clear "wins" - utilizing them does not adversely 
affect the other two components of the equation.  

a) Improving the implementation so as to allow a faster clock.

However, in the past half-decade or so we seem to have hit a plateau 
in this regard; clock speeds have peaked out around 2-3 GHz.
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b) Using more efficient algorithms

However, for many problems we have discovered algorithms 
which leaves little room for improvement.

5. In the case of CPI, it appears, that it is only possible to reduce CPI 
at the cost of more  instructions or a slower clock.  However, while 
there is no way to reduce the total number of clocks needed for an 
individual instruction without adversely impacting some other 
component of performance, it is possible to reduce the AVERAGE 
CPI by doing portions of two or more instructions in parallel.  That 
is the topic we look at in the next few lectures.

C. There are several general ways to reduce average CPI

1. If we look at the execution of a single instruction, we typically find 
that it uses other parts of the system at different times as well.

a) Example: It turns out that any instruction on mips only uses the 
ALU proper on its second cycle.  

b) Again, on mips, the data path between memory and the CPU is 
only used on the first clock cycle (to fetch the instruction) and 
the third (to load or store data.)

c) We could potentially reduce average CPI by having different 
instructions using different parts of the system at the same time 
- e.g. on mips one instruction might use the ALU at the same 
time other instructions are doing something else.

d) This yields a strategy known as PIPELINING.

2. We might achieve even greater parallelism by replicating portions 
of the system - e.g. if it had two ALU’s it could do cycle 2  of two 
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different instructions at the same time.  This leads to various 
strategies including VLIW and Superscalar Architectures.

3. We will look at each of these in turn.  Later in the course, we will 
look at a number of strategies for improving performance by the 
use of full parallelism (e.g. multicore CPUs).

II. Pipelining

A.  What if we could achieve total  overlap between all phases of 
different instructions? - e.g.

Step 3         -S1--S2--S3-

Step 2     -S1--S2--S3-

Fetch  -S1--S2--S3-

Time ---------->

[ This reduces average time per instruction time by 67% compared to 
the original scheme]

1. We call this a FULLY PIPELINED CPU.  In the steady state, it  
completes one instruction on every cycle, so its average CPI is 1. 
This is, in fact, what RISC implementations do - and RISC ISAs 
are structured to make such an implementation straightforward.

2. Of course, an average CPI of 1 is attainable only when the pipeline 
is full of valid instructions.  If the pipeline must be flushed (as 
would be the case whenever a branch is taken in program 
execution), it will take several cycles for the pipeline to fill up 
again.

B. Rather than discussing an actual MIPS pipeline, which uses both the 
rising and falling edge of the clock so that some stages require only 
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half a clock period, we will discuss a simplified pipeline that is a bit 
easier to understand.  It has four stages. 

SHOW Pipelined MIPS simulation.  Distribute handout of stage 
structure

Note that, though some hardware units appear in more than one stage, 
each data path exists in exactly one stage.

1. Stage 0 is instruction fetch.  This step is, of course, the same for all 
instructions since we don’t have the instruction yet.

Each of the remaining stages has an Instruction Register.  Stage 0 
fetches an instruction into the Stage 1 IR, where execution of it 
begins.  On each clock, the Stage 1 Instruction is moved to Stage 2 
and the Stage 2 instruction is moved to Stage 3.

DEMO: Load “Add 1 to Memory 1000” and clock a few times, 
showing how first instruction progresses through the stages.

2. Stage 1 does two things

SHOW Tab

a) It updates the PC.  Depending on the Instruction in the IR, this 
may come directly from the instruction (J-Format) or by adding 
the Immediate field of the instruction to the PC (beq, bne taken) 
or by adding 4 to the current PC (most instructions including 
beq, bne not taken)

b) It loads values into the ALU holding registers.  One value 
always comes from the register selected by the rs field of the 
Stage 1 instruction.  The other either comes from the register 
selected by rt or the Immediate field of the Stage 1 instruction.  
(A value is always loaded into both registers, even though one 
or both may turn out to be unused later)
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3. Stage 2 performs an ALU operation on the values in the holding 
registers (which were put there by Stage 1 of the instruction) and 
stores a result into the ALU output register.  What operation is 
performed is determined by the instruction in the Stage 2 IR.  (Add 
for load/store; instructions like j, beq, bne don’t actually need an 
ALU operation but one is done anyway, though the result is not 
used.)

4. Stage 3 stores a result, if appropriate, based on the instruction in 
the Stage 3 IR.

a) For R-Type instructions, the ALU output is stored in a register.

b) For load instructions, a memory location is stored in a register.

c) For store instructions, a register is stored in memory

d) For other instructions, nothing happens in this Stage.

5. Thus, four instructions are in the pipeline at any time - one at each 
stage.  Although it takes up to 4 clock cycles to execute any one 
instruction, one instruction is completed on each clock and so the 
effective time for an instruction is only one cycle - a fourfold 
speedup.

C. However, overlapping instructions can lead to various sorts of hazards 
due to inter-instruction dependencies (hazards).  

1. One sort of hazard is called a BRANCH HAZARD or CONTROL 
HAZARD.  It can arise if the current instruction is a branch (or 
jump). 

a) In this case, how can we know while the branch instruction is 
being executed ins Stage 1 whether to fetch the next sequential 
instruction or the one at the branch address in Stage 0?  (Indeed, 
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even if the branch is unconditional, how can one know what the 
branch address is if it involves computation as with relative 
mode addressing?)

b) One possibility is to suspend fetching of instructions during 
execution of a branch instruction until the outcome is known 
and/or the target address is calculated.  In the case of full 
pipelining, this is sometimes called a PIPELINE BUBBLE or 
STALL, and is implemented by changing the instruction that 
was fetched to something like a nop which effectively nullifies 
it.  Of course, this has a negative impact on speed, sometimes 
called a “branch penalty”.

c) Some CPU’s use some approach for "guessing" which way the 
branch will turn out.   This is called BRANCH PREDICTION. 
How can such a prediction be done?

(1)One way to do the prediction is to use the following rule of 
thumb: assume that forward conditional branches will not be  
taken, and backward conditional branches will be taken.

Why?  ASK

- Forward branches typically arise from a construct like

if something ...
	
 common case
else
	
 less common case

- Backward branches typically result from loops - and only 
the last time the branch is encountered will it not be taken.
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(2)Some machines incorporate bits into the format for branch  
instructions whereby the compiler can furnish a hint as to 
whether the branch will be taken.

(3)Some machines maintain a branch history table which stores 
the address from which a given branch instruction was 
fetched and an indication as to whether it was taken the last 
time it was executed

(4)Of course, if a branch is predicted to be taken, the problem 
remains of knowing the target address if it is computed 
during execution of the instruction.  On a pipelined CPU that 
uses a branch history table, this can be addressed by storing 
the actual target address as well - if relative mode addressing 
is used, the target for a given branch instruction will always 
be the same.

d) Some machines (such as MIPS) _always_ execute the 
instruction after the branch instruction, even if the branch is 
taken.  This is called DELAYED BRANCH. 

(This is the reason for the assembler inserting a nop after a 
branch instruction.  In many cases - as we shall see later - it 
turns out to be possible to rearrange instructions in such a way 
as to place a useful instruction in this slot)

e) Of course, other control transfer instructions - e.g. j, jal face a 
similar problem, even though the branch is always taken, since 
the target address must still be computed.  Machines (like 
MIPS) that use delayed branch typically use this approach for 
these instructions as well.

2. With pipelining, an additional complication arises. 
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a) Suppose we have the sequence of instructions S1, S2 ...; 
instruction S2 uses some register as one of its its operands, and 
suppose that the result of S1 is stored in this  same register - 
e.g.
S1:     addi $1, $0, 0x2a
S2:     add  $2, $1, $0

 (Clearly, the intention is for S2 to use the value stored by S1)

 If S2 loads this register into an ALU input register in its Stage 
1, and  S1 doesn’t store its result into this register until its Stage 
3 (which coincides with S1’s Stage 2) , then the value  that S2 
uses will be the PREVIOUS VALUE in the register - not the 
one stored by S1, as intended by the programmer.

This can be seen more clearly in the following

Note how, at time 2, S2 uses the value in $1 before S1 stores its 
computed value at time 3!

b) This sort of situation is called a DATA HAZARD or DATA 
DEPENDENCY.  

c) In this particular case, it can be resolved by a strategy called 
DATA FORWARDING.  Observe that when an RType 
instruction is immediately followed by some other instruction 
that uses its result, the source value needed by the second 
instruction is being computed in the ALU - it just hasn’t yet 
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time 0 time 1 time 2 time 3 time 4
S1: addi $1, 
$0, 0x2a

Stage 0: 
fetched

Stage 1: put 0 
and 42 into 
ALU input 
registers

Stage 2: 
Compute ALU 
Output = 0 + 
42

Stage 3: Store 
42 in $1

S2: addi $2, 
$1, $0

Stage 0: 
fetched

Stage 1: put 
$1 and $0 into 
ALU input 
registers

Stage 2: 
Compute ALU 
Output = sum 
of inputs

Stage 3: Store 
result in $2



been placed into the ALU holding register or ultimately the 
correct register in the register file. (In the example, at time 2).  

In such a case, the hardware can detect this situation and 
forward the value directly from the ALU output to the ALU 
input register (while also storing it into the output holding 
register on the next clock so it is available to future instructions.  
This produces a result like the following:

Demo: (Using pipelined implementation) 

load Forwarding Demo RType.
Be sure r1 contains zero.
clock twice
Note that Stage 1 IR contains rs = $1, and $1 is still zero
Note use of forwarding for rs.
clock again - note correct value loaded into holding register

d) However, this doesn’t work for memory load instructions.  A 
read from memory is not done until Stage 3 of the pipeline, 
which coincides with Stage 1 of the instruction two behind it.  
(Stage 2 is used to compute the address of the value to load)

Consider the following program.  (Assume memory address 
1000 contains 42)
S1:     lw	 $1, 0x1000($0)
S2:     add  $2, $1, $0
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time 0 time 1 time 2 time 3 time 4
S1: addi $1, 
$0, 0x2a

Stage 0: 
fetched

Stage 1: put 0 
and 42 into 
ALU input 
registers

Stage 2: 
Compute ALU 
Output = 0 + 
42

Stage 3: Store 
42 in $1

S2: addi $2, 
$1, $0

Stage 0: 
fetched

Stage 1: put 
forwarded 42 
and 0 into ALU 
input registers

Stage 2: 
Compute ALU 
Output = 42 + 
0

Stage 3: Store 
42 in $2



This program executes as follows:

Demo: (Using pipelined implementation) 

load Delayed Load Need Demo
Be sure r1 contains zero.
clock twice
Note that Stage 1 IR contains rs = $1, and $1 is still zero
Note value has not yet been read from memory.
clock again - note incorrect value loaded into holding register

(1) .In such cases, one possible solution is to use an approach 
known as DELAYED LOAD: code may not use a register in 
the instruction immediately after one that loads it (If an 
instruction just after a load does try to use the same register 
as a source, something bad happens like it gets the OLD 
value.)  Our program would need to incorporate a nop as 
was done for delayed branch:

S1:     lw	 $1, 0x1000($0)
S2:     nop
S3:     add    $2, $1, $0

(a) This was the approach used by early MIPS 
implementations - the instruction immediately after a 
load may not use the register that was just loaded.   
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time 0 time 1 time 2 time 3 time 4
S1: lw $1, 
1000($0)

Stage 0: 
fetched

Stage 1: put 0 
and 1000  into 
ALU input 
registers

Stage 2: 
Compute 
address = 0 + 
1000

Stage 3: Load 
$1 with value 
at address 
1000

S2: addi $2, 
$1, $0

Stage 0: 
fetched

Stage 1: put 
$1 and $0 into 
ALU input 
registers

Stage 2: 
Compute ALU 
Output = sum 
of inputs

Stage 3: Store 
result in $2



(b)It appears, from the above, that a delay of 2 cycles would 
actually be needed, but this was reduced to 1 by forwarding 
the value fetched from memory at time 3 into an ALU input 
register at time 1 of the instruction two behind.  This 
produces the following result

Demo: (Using pipelined implementation) 

load Delayed Load Demo
Be sure r1 contains zero.
clock three times
Note that Stage 1 IR contains rs = $1, and $1 is still zero
Note use of forwarding for rs.
clock again - note correct value loaded into holding register

(2)Another approach to handle such a situation is variously 
known as interlocking, a pipeline stall, or a "bubble".

(a) The hardware can detect the situation where the Stage 2 
IR contains an instruction which will load a value into 
the same register as one of the source operands of the 
instruction in the Stage 1  IR.   (This is a simple 
comparison between IR field  contents that is easily 
implemented with just a few gates.)
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time 0 time 1 time 2 time 3 time 4 time 5
S1: lw $1, 
1000($0)

Stage 0: 
fetched

Stage 1: put 0 
and 1000  
into ALU input 
registers

Stage 2: 
Compute 
address = 0 + 
1000

Stage 3: Load 
$1 with value 
at address 
1000 (42)

S2: nop Stage 0: 
fetched

[ Do nothing ] [ Do nothing ] [ Do nothing ]

S3: addi $2, 
$1, $0

Stage 0: 
fetched

Stage 1: put 
forwarded 
value read 
(42) and 0 
into ALU input 
registers

Stage 2: 
Compute ALU 
Output = 42 + 
0

Stage 3: Store 
42 in $2



(b) In such cases, the hardware can replace the instruction in the 
Stage 1 IR with a NOP and force Stage 0 to refetch the same 
instruction instead of going on to the next, and use forwarding 
for the value read from memory.  This produces a result like 
the following

Demo: (Using interlocked implementation) 
load Delayed Load Need Demo (that didn’t work before).
Be sure r1 contains zero.
clock twice
Note that Stage 1 IR contains rs = $1, and Stage 2 IR rt = $1
Note that PC and Stage 1 IR are locked - i.e. won’t change 
	
 on next clock [ note values ]
Note that Stage 2 IR is marked to become a bubble [note 
	
 value ]
Clock again
Note that PC and IR 1 values are unchanged; IR 2 has 
	
 become a nop; but value in IR2 has moved on to IR3
Note use of forwarding for rs.
clock again - note correct value loaded into holding register
Note how value being read from memory is forwarded to
	
 Stage 1 rs
Clock again
Note how correct value (42) has been loaded into first ALU 
input register
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time 0 time 1 time 2 time 3 time 4 time 5
S1: lw $1, 
1000($0)

Stage 0: 
fetched

Stage 1: put 0 
and 1000  
into ALU input 
registers

Stage 2: 
Compute 
address = 0 + 
1000

Stage 3: Load 
$1 with value 
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1000

S2: addi $2, 
$1, $0

Stage 0: 
fetched

[ Changed to 
NOP ]

[ Do nothing ] [ Do nothing ]

Stage 1: put 
forwarded 
value read and 
0 into ALU 
input registers

Stage 2: 
Compute ALU 
Output = 42 + 
0

Stage 3: Store 
42 in $2



(c) Of course, interlocking means wasting a clock cycle 
when necessary, since the NOP does no useful work - but 
this is no more wasteful in terms of execution time than 
using delayed load, and the overall program is shorter.

(d)Later MIPS implementations (starting with MIPS ISA 
III) avoided the need for delayed load by using 
interlocking.

D. Because a RISC pipeline is so regular in its operation, the compiler 
may be expected to use knowledge about the pipeline ensure correct 
code or even to optimize the code it generates.

1. We’ve just noted that one problem faced by pipelined CPU's is data 
dependencies that cannot be resolved in the hardware by forwarding.

a) If the CPU uses delayed load, we can require the compiler to 
avoid emitting an instruction that uses the result of a  load 
instruction immediately after that instruction.  (The compiler 
can either put some other, unrelated instruction in between, or it 
can emit a NOP if all else fails.)

Example: suppose a programmer writes:

d = a + b + c + 1

This could be translated to the following:

lw     $10, a          # r10 <- a
lw     $11, b          # r11 <- b
nop    # inserted to deal with data hazard
add    $11, $10, $11   # r11 <- a + b
lw     $12, c          # r12 <- c
nop    # inserted to deal with data hazard
add    $12, $11, $12   # r12 <- a + b + c 
add    $12, $12, 1     # r12 <- a + b + c + 1
sw     d, $12          # d <- a + b + c + 1
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b) A “smart” compiler can sometimes eliminate the NOPS by 
rearranging the code.  For example, the computation of  d = a + 
b + c + 1 might be done by

lw    $10, a          # r10 <- a
lw    $11, b          # r11 <- b
lw    $12, c          # r12 <- c
add   $11, $10, $11   # r11 <- a + b
add   $12, $11, $12   # r12 <- a + b + c 
add   $12, $12, 1     # r12 <- a + b + c + 1
sw    $12, d          # d <- a + b + c + 1

c) What if the hardware incorporates interlocks to stall the 
pipeline if an attempt is made to use a register that is currently 
being  loaded, instead of using a delayed load?

(1) Interlocking becomes necessary in cases where the amount 
of parallelism in the system makes it unreasonable to require 
that the compiler anticipate all eventualities.  (For example, 
this is the reason why MIPS implementations since MIPS 
ISA III have used interlocking, though most earlier MIPS 
implementation required the compiler to prevent the 
problem.)

(2)Rearranging code as above will still result in faster 
execution, since stalls will not be needed, so a “smart” compiler 
may attempt to do so to the extent possible.

2. Another source of potential problems - which we have already 
noted - is branch dependencies.

a) The delayed branch approach used by RISCs like mips  must be 
allowed for by the compiler.

(1)All control transfer instructions (subroutine calls and returns  
as well as jumps) take effect AFTER the next instruction in 
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sequence is executed, so such instructions are often followed 
by a nop, as we have seen in lab.

(2)However, a good compiler can often work with this feature 
of the hardware by inserting a branch instruction ahead of 
the last  instruction to be done in the current block of code.  

Consider the following example: Suppose we were 
compiling

if (x == 0)
	
 a = a + 1;
else
	
 a = a - 1;

(With x and a local variables allocated to reside in $15 and 
$16, respectively.)   This could be translated as

	 bne	  $15, $0, else_part	 # branch if x != 0
	 nop 
	 addi	 $16, $16, 1	 # a = a + 1
	 b    end_if
	 nop
else_part:
	 addi    $16, $16, -1      # a = a - 1
end_if:

We could eliminate one nop as follows:

	 bne	  $15, $0, else_part	 # branch if x != 0
	 nop 
	 b    end_if
	 addi	 $16, $16, 1	 # a = a + 1
else_part:
	 addi    $16, $16, -1      # a = a - 1
end_if:
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(3)Unfortunately, in this case the first nop cannot be eliminated, 
But suppose the original code were

if (x == 0)
	
 a = a + 1;
else
	
 a = a - 1;
b = b + 1;

(With b a local variable in $17)

How would it be possible to translate this code without 
using any nops?

ASK
	
 bne	  $15, $0, else_part	 # branch if x != 0
	 addi $17, $17, 1	 # b = b + 1
	 b    end_if
	 addi	 $16, $16, 1	 # a = a + 1
else_part:
	 addi    $16, $16, -1      # a = a - 1
end_if:

E. The potential speedup from pipelining is a function of the number of 
stages in the pipeline.

1. For example, suppose that an instruction that would take 4 ns to 
execute is implemented using a 4 stage pipeline with each stage 
taking 1 ns.  Then the speedup gained by pipelining is

w/o pipeline  - 1 instruction / 4 ns
with pipeline - 1 instruction / 1 ns           4ns/1ns = 4:1

Now if, instead, we could implement the same instruction using a 5 
stage pipeline with each stage taking 0.8 ns, we could get a 5:1  
speedup instead.
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2. This leads to a desire to make the pipeline consist of as many 
stages as possible, each as short as possible.  This strategy is 
known as SUPERPIPLINING.

a) The basic idea is to break the execution of an instruction into 
smaller pieces and use a faster clock, perhaps performing 
operations on both the falling and the rising edge of the clock 
(i.e. having two pipeline stages per clock.)

b) Of course, the longer the pipeline, the greater the potential  
waste of time due to data and branch hazards. 

(1)Branch hazards can be reduced by doing the relevant 
computations in the earliest possible pipeline stage, or by 
using a branch history table (with saved target addresses), or 
by reducing the need for branches through a technique 
known as predication - to be discussed below.

(2)Data hazards, again, may lead to a need to use interlocking 
to ensure correct results; with the order of operations in code 
driven by minimizing the need for this.

c) Note that superpipelining attempts to maintain CPI at 1 (or as 
close as possible) while using a longer pipeline to allow the use 
of a faster clock.

F. So far in our discussion, we have assumed that the time for the actual  
computation portion of an instruction is a single cycle (the rest of the 
steps being used to handle getting the operands and storing the result) 
This is realistic for simple operations like AND, fixed point ADD etc. 
However, for some instructions multiple cycles are needed for the 
actual  computation.

1. These include fixed-point multiply and divide and all floating point 
operations.
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2. To deal with this issue, some pipelined CPU's simply exclude such 
instructions from their instruction set - relegating them to co-
processors or special hardware (e.g. MIPS approach).

3. If such long operations are common (as would be true in a machine 
dedicated to scientific computations), further parallelism might be 
considered in which the computation phases of two or more 
instructions overlap.  We will not discuss this now, but will come 
back to it under vector processors later in the course.

III.Moving Beyond Basic Pipelining By Replicating Functional Units

A. It would appear, at first, that a CPI of 1 is as good as we can get - so 
there is nothing further that can be done beyond full pipelining to 
reduce CPI.  Actually, though, we can get CPI less than one if we  
execute two or more instructions fully in parallel (i.e. fetch them at the 
same time, do each of their steps at the same time, etc) by duplicating 
major portions of the instruction execution hardware.

1. If we can start 2 instructions at the same time and finish them at the 
same time, we complete 2 instructions per clock, so average CPI 
drops to 0.5.  If we can do 4 at a time, average CPI drops to 0.25.

2. In describing architectures like this, the term ISSUE is used for 
starting an instruction and RETIRE is used for completing an 
instruction. 

a) Because not all instructions require the same number of clock 
cycles, a system may actually retire a greater or lesser number  
of instructions on any clock than it issues on that clock, but the 
average number of issues/retires per clock will be the same.

b) Various hazards make it impossible to always achieve the 
maximum degree of parallelism.  Thus, in some cases the 
machine will issue fewer instructions on a clock than it 
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potentially could (perhaps even zero).  When an instruction is 
not issued on some clock due to a hazard, it is held until the 
next clock, when an  attempt is made again to issue it.

3. Multiple issue is facilitated by taking advantage of the fact that 
many CPU's have separate execution units for executing different 
types of instructions - e.g. there may be:

a) An integer execution unit used for executing integer 
instructions like add, bitwise or, shift etc.

b) A floating point execution unit for executing floating point  
arithmetic instructions.  (Note that many architectures use 
separate integer and floating point register sets).

c) A branch execution unit used for executing branch instructions.

(etc)

d) If two instructions need two different execution units (e.g. if 
one is an integer instruction and one is floating point) then they 
can be issued simuiltaneously and execute totally in parallel 
with each other, without needing to replicate execution 
hardware (though decode and issue hardware does need to be 
replicated.)

Note that, for example, many scientific programs contain a 
mixture of floating point operations (that do the bulk of the 
actual computation), integer operations (used for subscripting 
arrays of floating point  values and for loop control), and branch 
instructions (for loops). For such programs, issuing multiple 
instructions at the same time becomes very feasible.

4. The earliest scheme used for doing this was the VERY LONG 
INSTRUCTION WORD architecture.  In this architecture, a single 
instruction could  specify more than one operation to be performed - 
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in fact, it could specify one operation for each execution unit on the 
machine.

a) The instruction contains one group of fields for each type of 
instruction - e.g. one to specify an integer operation, one to 
specify a floating point operation, etc.

b) If it is not possible to find operations that can be done at the 
same time for all functional units, then the instruction may 
contain a NOP in the group of fields for unneeded units.

c) The VLIW architecture required the compiler to be very 
knowledgeable of implementation details of the target 
computer, and could require a program to be recompiled if 
moved to a different implementation of  he same architecture.  

d) Because most instruction words contain some NOP's, VLIW 
programs tend to be very long.

e) A more recent implementation of this strategy, called EPIC 
(explicitly parallel instruction computing) is used in the Itanium 
architecture jointly developed by Intel and Hewlett Packard and 
currently used for high-performance systems such as servers.

5. Most CPU’s today use a somewhat approach known as 
SUPERSCALAR architecture.

a) A superscalar CPU fetches groups of instructions at a time - 
typically two (64 bits) or four (128 bits) and decodes them in 
parallel.  

b) That is, a superscalar CPU has just one instruction fetch unit, 
but it fetches a whole group of instructions,  but it has 2 or 4 
decode units and a number of different execution units.
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c) The instructions can be of any type (integer, floating point, 
branch, etc.)  If the instructions fetched together need different 
execution units, then they are issued at the same time.   If two 
instructions need the same execution unit, then only the first is 
issued; the second  is issued on the next clock.  (This is called a 
STRUCTURAL HAZARD).

d) To reduce the number of structural hazards that occur, some 
superscalar CPU's have two or more integer execution units, 
along with a branch unit and a floating point unit, since integer 
operations are more frequent.  Or, they might have a unit that 
handles integer multiply and divide and one that does add and 
subtract.

6. Once again, the issue of data and branch hazards becomes more 
complicated when multiple instructions are issued at once, since an 
instruction cannot depend on the results of any instruction issued at 
the same time, nor on the results of any instruction issued on the 
next one or more clocks.  With multiple instructions issued per 
clock, this increases the potential for interaction between 
instructions, of course.

a) Example: If a CPU issues 4 instructions per clock, then up to 
seven instructions following a branch might be in the pipeline 
by the time the branch instruction finishes computing its target 
address.  (If it is the first of a group of 4, plus a second group of 
4.)

b) Example: If a CPU issues 4 instructions per clock, then there 
may need to be a delay of up to seven instructions before one 
can use the result of a load instruction, even with data 
forwarding as described above.
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B. Dealing with Hazards on a Superscalar Machine

1. Data hazards

a) We have previously seen how data forwarding can be used to 
eliminate data hazards between successive instructions where 
one instruction uses a result computed by an immediately-
preceding one.  However, if "producer" and "consumer" 
instruction are executed simultaneously in different execution 
units, forwarding no longer helps.  Likewise, the unavoidable 
one cycle delay needed by a load could effect many successive 
instructions.

b) Superscalar machines typically incorporate hardware interlocks 
to prevent data hazards from leading to wrong results.  When an 
instruction that will store a value into a particular register is 
issued, a lock bit is set for that register that is not cleared until 
the value is actually stored - typically several cycles later.  An 
instruction that uses a locked register as a data input is not 
issued until the register(s) it needs is/are unlocked.

c) Further refinements on this include a provision that allows the 
hardware to schedule instructions dynamically, so that a "later" 
instruction that does not depend on a currently executing 
instruction might be issued after an "earlier" instruction that 
does.  (This is called OUT OF ORDER EXECUTION.)  Of 
course, the  hardware that does this must avoid reordering 
instructions in such a way as to change the meaning of the 
program [ e.g. interchanging two instructions that both store a 
value in the same place, since the final store is the one that 
“sticks” ]
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2. Branch hazards

a) Stalling the pipeline until the outcome of a conditional branch 
is known is one possible solution - but it can get expensive, 
since quite a number of instructions could  be issued in the time 
it takes a conditional branch instruction to get to the point 
where its outcome is known.

b) Another way to deal with branch hazards is to use branch 
prediction to speculatively issue several instructions before the 
outcome of a conditional branch is known.

(1)A branch history table can be be used to “remember” the 
target address of branch instructions to allow moving down 
the “branch taken” path if this is the predicted outcome.  
(Otherwise, the pipeline would have to stall if branch taken 
is predicted.)

(Since the target address of a branch instruction is generally  
computed by PC + displacement in instruction, a given 
branch instruction will always point to the same target.)

(2) If a prediction turns out to be wrong, the pipeline is flushed 
and quite a bit of work may have to discarded.   (However, 
the loss is no greater than if the CPU had stalled until the 
branch outcome is known).

(3) In any case, though, prediction requires the ability to reach a  
definitive decision about whether the branch is going to be 
taken before any following instructions have stored any 
values into memory or registers.

c) An alternative to branch prediction that is used on the Intel Itanium 
RISC architecture (formerly IA64) is called PREDICATION.  In 
this strategy, the CPU includes a number of one bit predicate 
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registers that can be set by conditional instructions.  The 
instruction format includes a number of bits that allow execution of 
an instruction to  be contingent on a particular predicate register  
being true (or false).  Further, a predicated instruction can begin 
executing before the value of its predicate is actually known, as 
long as the value becomes known before the instruction needs to 
store its result.  At that point, if the predicate is false, the storage of 
the instruction’s result is inhibited.  

This can eliminate the need for a lot of branch instructions.

Example:

if r10 = r11 then
	
 r9 = r9 + 1
else
	
 r9 = r9 - 1

Would be translated on MIPS as:

	 bneq    $10, $11, else
	 nop                 # Branch delay slot
	 br      endif
	 addi    $9, $9, 1   # In branch delay slot 
else:
	 addi    $9, $9, -1
endif:

Which is 5 instructions long and needs 4 clocks if $10 = $11  and 3 
if not.

But on a machine with predication as:

set predicate register 1 true if $10 = $11
(if predicate register 1 is true) addi $9, $9, 1
(if predicate register 1 is false) addi $9, $9, -1
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Which is 3 instructions long (all of which can be done in parallel, 
provided the set predicate instruction sets the predicate register 
earlier in its execution than the other two store their results.)

C. Advanced CPU's use both superpiplining and superscalar techniques. 
The benefits that can be achieved are, of course, dependent on the 
ability of the compiler to arrange instructions in the program so that 
when one instruction depends upon another it occurs enough later in 
the program to prevent hazards from stalling execution and wasting 
the speedup that could otherwise be attained.
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